1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.optim as optim
# 准备数据集
batch_size = 64
# transform:把图像转化成图像张量
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./data/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./data/mnist/', train=False, download=True, transform = transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# 设计网络模型
class Net(torch.nn.Module):
def __int__(self):
super(Net, self).__int__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5) # 每个卷积核的channel和输入数据的channel一致
self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=2)
self.pooling1 = torch.nn.MaxPool2d(2)
self.pooling2 = torch.nn.MaxPool2d(3)
self.fc1 = torch.nn.Linear(30, 20) # 全连接层
self.fc2 = torch.nn.Linear(20, 10) #
def forward(self, x):
batch_size = x.size(0)
x = self.pooling1(F.relu(self.conv1(x)))
x = self.pooling1(F.relu(self.conv2(x)))
x = self.pooling2(F.relu(self.conv3(x)))
x = x.view(batch_size, -1) # 自动算并填充
x = self.fc1(x)
x = self.fc2(x)
return x
model = Net()
# 迁移到GPU上计算(cuda: 0 是对应GPU的编号)
# device = torch.device("cuda: 0" if torch.cuda.is_available() else "cpu")
# device.to(device)
# 损失和优化器
# 因为网络模型已经有点大了,所以梯度下降里面要用更好的优化算法,比如用带冲量的(momentum),来优化训练过程
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 一轮训练
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
# inputs, target = inputs.to(device), target.to(device) # 迁移到GPU,注意要和模型放到同一块GPU
optimizer.zero_grad() # 优化器 先清零
# forward + backword + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print("[%d, %5d] loss:%.3f" % (epoch+1, batch_idx+1, running_loss/2000))
def test():
correct = 0
total = 0
# 避免计算梯度
with torch.no_grad(): # 测试不用算梯度
for data in test_loader:
images, labels = data
# iamges, labels = images.to(device), labels.to(device) # 利用GPU
outputs = model(images)
# 返回值一个是每一行的最大值,另一个是最大值的下标(每一个样本就是一行,每一行有10个量)(行是第0个维度,列是第1个维度)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item() # 推测出来的分类与label是否相等,真就是1,假就是0,求完和之后把标量拿出来
print('Accuracy on test set: %d %%' % (100 * correct / total))
# 训练
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
|